621 research outputs found

    Asymptotic preserving Implicit-Explicit Runge-Kutta methods for non linear kinetic equations

    Full text link
    We discuss Implicit-Explicit (IMEX) Runge Kutta methods which are particularly adapted to stiff kinetic equations of Boltzmann type. We consider both the case of easy invertible collision operators and the challenging case of Boltzmann collision operators. We give sufficient conditions in order that such methods are asymptotic preserving and asymptotically accurate. Their monotonicity properties are also studied. In the case of the Boltzmann operator, the methods are based on the introduction of a penalization technique for the collision integral. This reformulation of the collision operator permits to construct penalized IMEX schemes which work uniformly for a wide range of relaxation times avoiding the expensive implicit resolution of the collision operator. Finally we show some numerical results which confirm the theoretical analysis

    Fokker-Planck Asymptotics for Traffic Flow Models

    Full text link
    Starting from microscopic interaction rules we derive kinetic models of Fokker--Planck type for vehicular traffic flow. The derivation is based on taking a suitable asymptotic limit of the corresponding Boltzmann model. As particular cases, the derived models comprise existing models. New Fokker--Planck models are also given and their differences to existing models are highlighted. Finally, we report on numerical experiments

    Exponential Runge-Kutta methods for stiff kinetic equations

    Full text link
    We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation times and avoid the solution of nonlinear systems of equations even in stiff regimes. We give sufficient conditions in order that such methods are unconditionally asymptotically stable and asymptotic preserving. Such stability properties are essential to guarantee the correct asymptotic behavior for small relaxation times. The methods also offer favorable properties such as nonnegativity of the solution and entropy inequality. For this reason, as we will show, the methods are suitable both for deterministic as well as probabilistic numerical techniques

    Implicit-Explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit

    Full text link
    We consider Implicit-Explicit (IMEX) Runge-Kutta (R-K) schemes for hyperbolic systems with stiff relaxation in the so-called diffusion limit. In such regime the system relaxes towards a convection-diffusion equation. The first objective of the paper is to show that traditional partitioned IMEX R-K schemes will relax to an explicit scheme for the limit equation with no need of modification of the original system. Of course the explicit scheme obtained in the limit suffers from the classical parabolic stability restriction on the time step. The main goal of the paper is to present an approach, based on IMEX R-K schemes, that in the diffusion limit relaxes to an IMEX R-K scheme for the convection-diffusion equation, in which the diffusion is treated implicitly. This is achieved by an original reformulation of the problem, and subsequent application of IMEX R-K schemes to it. An analysis on such schemes to the reformulated problem shows that the schemes reduce to IMEX R-K schemes for the limit equation, under the same conditions derived for hyperbolic relaxation. Several numerical examples including neutron transport equations confirm the theoretical analysis

    A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation

    Get PDF
    In this paper we consider the development of Implicit-Explicit (IMEX) Runge-Kutta schemes for hyperbolic systems with multiscale relaxation. In such systems the scaling depends on an additional parameter which modifies the nature of the asymptotic behavior which can be either hyperbolic or parabolic. Because of the multiple scalings, standard IMEX Runge-Kutta methods for hyperbolic systems with relaxation loose their efficiency and a different approach should be adopted to guarantee asymptotic preservation in stiff regimes. We show that the proposed approach is capable to capture the correct asymptotic limit of the system independently of the scaling used. Several numerical examples confirm our theoretical analysis

    Adaptive and Recursive Time Relaxed Monte Carlo methods for rarefied gas dynamics

    Full text link
    Recently a new class of Monte Carlo methods, called Time Relaxed Monte Carlo (TRMC), designed for the simulation of the Boltzmann equation close to fluid regimes have been introduced. A generalized Wild sum expansion of the solution is at the basis of the simulation schemes. After a splitting of the equation the time discretization of the collision step is obtained from the Wild sum expansion of the solution by replacing high order terms in the expansion with the equilibrium Maxwellian distribution; in this way speed up of the methods close to fluid regimes is obtained by efficiently thermalizing particles close to the equilibrium state. In this work we present an improvement of such methods which allows to obtain an effective uniform accuracy in time without any restriction on the time step and subsequent increase of the computational cost. The main ingredient of the new algorithms is recursivity. Several techniques can be used to truncate the recursive trees generated by the schemes without deteriorating the accuracy of the numerical solution. Techniques based on adaptive strategies are presented. Numerical results emphasize the gain of efficiency of the present simulation schemes with respect to standard DSMC methods

    Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit

    Full text link
    We develop a new Monte Carlo method that solves hyperbolic transport equations with stiff terms, characterized by a (small) scaling parameter. In particular, we focus on systems which lead to a reduced problem of parabolic type in the limit when the scaling parameter tends to zero. Classical Monte Carlo methods suffer of severe time step limitations in these situations, due to the fact that the characteristic speeds go to infinity in the diffusion limit. This makes the problem a real challenge, since the scaling parameter may differ by several orders of magnitude in the domain. To circumvent these time step limitations, we construct a new, asymptotic-preserving Monte Carlo method that is stable independently of the scaling parameter and degenerates to a standard probabilistic approach for solving the limiting equation in the diffusion limit. The method uses an implicit time discretization to formulate a modified equation in which the characteristic speeds do not grow indefinitely when the scaling factor tends to zero. The resulting modified equation can readily be discretized by a Monte Carlo scheme, in which the particles combine a finite propagation speed with a time-step dependent diffusion term. We show the performance of the method by comparing it with standard (deterministic) approaches in the literature
    • …
    corecore